4,281 research outputs found

    The radial evolution of the solar wind, 1-10 AU

    Get PDF
    The interplanetary plasma and magnetic field observations from 1 to 10 AU are reviewed. Over this distance no clear reduction in average speed is seen. The range of wind speeds becomes smaller though high speed streams are still observed. The density, temperature and magnetic field profiles become dominated by the large values seen in the co-rotating interaction regions. The temperature falls more slowly than would be expected from a simple, adiabatic model. Co-rotating shocks appear beyond approximately 3 AU in Voyager data as opposed to beyond approximately 1.5 AU in the Pioneer data. Reverse shocks appear later than forward shocks; reverse shocks do not begin to appear until approximately 4 AU; reverse shocks appear to decay more rapidly than forward shocks. No clear effect due to interaction with the interstellar medium was seen in this radial range

    Viewpoints: A high-performance high-dimensional exploratory data analysis tool

    Full text link
    Scientific data sets continue to increase in both size and complexity. In the past, dedicated graphics systems at supercomputing centers were required to visualize large data sets, but as the price of commodity graphics hardware has dropped and its capability has increased, it is now possible, in principle, to view large complex data sets on a single workstation. To do this in practice, an investigator will need software that is written to take advantage of the relevant graphics hardware. The Viewpoints visualization package described herein is an example of such software. Viewpoints is an interactive tool for exploratory visual analysis of large, high-dimensional (multivariate) data. It leverages the capabilities of modern graphics boards (GPUs) to run on a single workstation or laptop. Viewpoints is minimalist: it attempts to do a small set of useful things very well (or at least very quickly) in comparison with similar packages today. Its basic feature set includes linked scatter plots with brushing, dynamic histograms, normalization and outlier detection/removal. Viewpoints was originally designed for astrophysicists, but it has since been used in a variety of fields that range from astronomy, quantum chemistry, fluid dynamics, machine learning, bioinformatics, and finance to information technology server log mining. In this article, we describe the Viewpoints package and show examples of its usage.Comment: 18 pages, 3 figures, PASP in press, this version corresponds more closely to that to be publishe

    Stream dynamics between 1 AU and 2 AU: A detailed comparison of observations and theory

    Get PDF
    A radial alignment of three solar wind stream structures observed by IMP-7 and -8 (at 1.0 AU) and Voyager 1 and 2 (in the range 1.4 to 1.8 AU) in late 1977 is presented. It is demonstrated that several important aspects of the observed dynamical evolution can be both qualitatively and quantitatively described with a single-fluid 2-D MHD numerical model of quasi-steady corotating flow, including accurate prediction of: (1) the formation of a corotating shock pair at 1.75 AU in the case of a simple, quasi-steady stream; (2) the coalescence of the thermodynamic and magnetic structures associated with the compression regions of two neighboring, interacting, corotating streams; and (3) the dynamical destruction of a small (i.e., low velocity-amplitude, short spatial-scale) stream by its overtaking of a slower moving, high-density region associated with a preceding transient flow. The evolution of these flow systems is discussed in terms of the concepts of filtering and entrainment

    Shocks in the solar wind between 1 and 8.5 AU: Voyager 1 observations

    Get PDF
    A survey was made of all interplanetary shocks detected by the plasma science experiment aboard the Voyager 1 spacecraft between 1.2 and 8.5 AU. Shock normals and shock velocities are determined. The variation of shock frequency and various shock parameters with heliocentric distance is discussed. The results indicate that beyond 1.2 AU, the vast majority of shocks were associated with interaction regions between high and low speed streams; of 95 events, only 1 was clearly associated with a transient event. Forward shocks were more numerous and seemed to form closer to the sun than reverse shocks. Forward shocks were stronger than reverse shocks. The energy balance of three shocks is examined. A close agreement is found between the measured and the predicted pressure ratios across these shocks. The contribution of shocks to the global energy balance is discussed. Shocks are found to have a significant effect in heating the solar wind

    Impact and collisional processes in the solar system

    Get PDF
    As impact cratered terrains have been successively recognized on certain planets and planetary satellites, it has become clear that impact processes are important to the understanding of the accretion and evolution of all solid planets. The noble gases in the normalized atmospheric inventories of the planets and the normalized gas content of meteorites are grossly similar, but demonstrate differences from each other which are not understood. In order to study shock devolatilization of the candidate carrier phases which are principally thought to be carbonaceous or hydrocarbons in planetesimals, experiments were conducted on noble gase implantation in various carbons: carbon black, activated charcoal, graphite, and carbon glass. These were candidate starting materials for impact devolatilization experiments. Initial experiments were conducted on vitreous amorphous carbon samples which were synthesized under vapor saturated conditions using argon as the pressurizing medium. An amino acid and surface analysis by laser ionization analyses were performed on three samples of shocked Murchison meteorite. A first study was completed in which a series of shock loading experiments on a porous limestone and on a non-porous gabbro in one and three dimensions were performed. Also a series of recovery experiments were conducted in which shocked molten basalt a 1700 C is encapsulated in molybdenum containers and shock recovered from up to 6 GPa pressures

    Constraints on Solar Wind Acceleration Mechanisms from Ulysses Plasma Observations: The First Polar Pass

    Get PDF
    The mass flux density and velocity of the solar wind at polar latitudes can provide strong constraints on solar wind acceleration mechanisms. We use plasma observations from the first polar passage of the Ulysses spacecraft to investigate this question. We find that the mass flux density and velocity are too high to reconcile with acceleration of the solar wind by classical thermal conduction alone. Therefore acceleration of the high-speed must involve extended deposition of energy by some other mechanism, either as heat or as a direct effective pressure, due possibly to waves and/or turbulence, or completely non-classical heat transport

    Coupled-Map Modeling of One-Dimensional Traffic Flow

    Full text link
    We propose a new model of one-dimensional traffic flow using a coupled map lattice. In the model, each vehicle is assigned a map and changes its velocity according to it. A single map is designed so as to represent the motion of a vehicle properly, and the maps are coupled to each other through the headway distance. By simulating the model, we obtain a plot of the flow against the concentration similar to the observed data in real traffic flows. Realistic traffic jam regions are observed in space-time trajectories.Comment: 5 postscript figures available upon reques

    The Effects of the Intense Solar Activity of March/June 1991 Observed in the Outer Heliosphere

    Get PDF
    The properties of the large scale Global Merged Interaction Region(GMIR)generated by the intense solar events of March and June 1991 with their marked south-north assymetry are studied using the available solar wind, interplanetary magnetic field and energetic particle data from the observing network of Pioneer 10 and Voyager 1 and 2 in the outer heliosphere

    Multi-Bunch Solutions of Differential-Difference Equation for Traffic Flow

    Full text link
    Newell-Whitham type car-following model with hyperbolic tangent optimal velocity function in a one-lane circuit has a finite set of the exact solutions for steady traveling wave, which expressed by elliptic theta function. Each solution of the set describes a density wave with definite number of car-bunches in the circuit. By the numerical simulation, we observe a transition process from a uniform flow to the one-bunch analytic solution, which seems to be an attractor of the system. In the process, the system shows a series of cascade transitions visiting the configurations closely similar to the higher multi-bunch solutions in the set.Comment: revtex, 7 pages, 5 figure
    • …
    corecore